How do you use the chain rule to differentiate #y=cos^7(pit-16)#?
1 Answer
We have:
# y = cos^7(pit-16) #
The chain rule gives us:
# dy/dt = dy/(du) * (du)/dt #
In application this means that, for example:
# d/dx u^n = n u^(n-1) * (du)/dx #
So to differentiate our given function we require two application of the chain rule; one to deal with
# dy/dt = 7cos^6(pi t-16) d/dt(cos(pi t-16) ) #
# " " = 7cos^6(pi t-16) (-sin(pi t -16) )(d/dt(pi t -16 )) #
# " " = 7cos^6(pi t-16) (-sin(pi t -16) )(pi) #
# " " = -7pi \ cos^6(pi t-16) \ sin(pi t -16) #
If you didn't follow that then I will show you the same result using direct substitution:
Let
# u = pi t -16 => (du)/dt = pi #
Let# v = cos u => (dv)/(du) = -sinu #
Then:
# y = cos^7(pit-16) #
# \ \ = cos^7(u) #
# \ \ = v^7 #
And so:
# (dy)/(dv) = 7v^6 #
Then by the chain rule we have:
# dy/dt = dy/(dv) * (dv)/(du) * (du)/dt #
# " " = 7v^6 * (-sinu) * pi #
# " " = -7pi \ (cos u)^6 \ sinu #
# " " = -7pi \ (cos (pi t -16))^6 \ sin(pi t -16) #
# " " = -7pi \ cos^6(pi t -16) \ sin(pi t -16) # , as above