How do you use the chain rule to differentiate y=(5x^4+1)^2y=(5x4+1)2?
1 Answer
May 1, 2017
Explanation:
d/dx(f(g(x)))=f'(g(x))xxg'(x)larr" chain rule"
"here "f(g(x))=(5x^4+1)^2
g(x)=5x^4+1
y=(5x^4+1)^2
rArrdy/dx=2(5x^4+1)xxd/dx(5x^4+1)
color(white)(rArrdy/dx)=2(5x^4+1)xx20x^3
color(white)(rArrdy/dx)=40x^3(5x^4+1)
color(white)(rArrdy/dx)=200x^7+40x^3