How do you use the chain rule to differentiate #y=(5x^4+1)^2#?
1 Answer
May 1, 2017
Explanation:
#d/dx(f(g(x)))=f'(g(x))xxg'(x)larr" chain rule"#
#"here "f(g(x))=(5x^4+1)^2#
#g(x)=5x^4+1#
#y=(5x^4+1)^2#
#rArrdy/dx=2(5x^4+1)xxd/dx(5x^4+1)#
#color(white)(rArrdy/dx)=2(5x^4+1)xx20x^3#
#color(white)(rArrdy/dx)=40x^3(5x^4+1)#
#color(white)(rArrdy/dx)=200x^7+40x^3#