How do you use integration by parts to establish the reduction formula intsin^n(x) dx = -(1/n)sin^(n-1)(x)cos(x)+(n-1)/nintsin^(n-2)(x)dx ?

1 Answer
Sep 19, 2014

Let I=int sin^nx dx.

By pulling out one of sin x's,

I=int sinx cdot sin^{n-1}x dx

Let u=sin^{n-1}x and dv=sinx dx
Rightarrow du=(n-1)sin^{n-2}xcosx and v=-cosx

by Integration by Parts,

=-sin^{n-1}xcosx+(n-1)int sin^{n-2}xcos^2xdx

by the trig identity cos^2x=1-sin^2x,

=-sin^{n-1}xcosx+(n-1)int sin^{n-2}x(1-sin^2x)dx

=-sin^{n-1}xcosx+(n-1)int sin^{n-2}xdx-(n-1)I

By adding (n-1)I

Rightarrow nI=-sin^{n-1}xcosx+(n-1)int sin^{n-2}xdx

By dividing by n,

I=-1/nsin^{n-1}xcosx+(n-1)/nint sin^{n-2}xdx