How do you use integration by parts to establish the reduction formula intcos^n(x) dx = (1/n)cos^(n-1)(x)sin(x)+(n-1)/nintcos^(n-2)(x)dx ?

1 Answer
Sep 11, 2014

Let
I=int cos^nxdx.

Let u=cos^{n-1}x and dv=cosxdx
Rightarrow du=-(n-1)cos^{n-2}x sinxdx and v=sinx

By Integration by Parts,
I=cos^{n-1}x sinx+(n-1)int cos^{n-2}xsin^2xdx
By sin^2x=1-cos^2x,
I=cos^{n-1}x sinx+(n-1)int cos^{n-2}x(1-cos^2x)dx
By splitting the last integral,
I=cos^{n-1}x sinx+(n-1)int cos^{n-2}xdx-(n-1)I
By adding (n-1)I,
nI=cos^{n-1}x sinx+(n-1)int cos^{n-2}xdx
By dividing by n,
I=1/ncos^{n-1}xsinx+{n-1}/nintcos^{n-2}xdx