How do you solve y=|x|y=|x| and y=x+2y=x+2 using substitution?
1 Answer
Explanation:
Use the substitution
y = x+2y=x+2
absx = x + 2|x|=x+2
Now subtract
absx - x = 2|x|−x=2
Hmm... how do we simplify this? Well, we have three cases:
" "x x is positive" "x x is zero" "x x is negative
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If
absx - x = 2, " " x >0|x|−x=2, x>0
x-x =2, " "color(white). x>0x−x=2, .x>0
0 = 2, " "" "" "x>00=2, x>0
And since
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Next, let's try case 2, when
|0| - 0 = 2|0|−0=2
0 = 20=2
Again,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Finally, when
absx - x = 2, " " x<0|x|−x=2, x<0
-x-x = 2, " " x<0−x−x=2, x<0
-2x = 2, " "" " x<0−2x=2, x<0
Now we can divide both sides by
(-2x)/(-2) = 2/(-2), " "x<0−2x−2=2−2, x<0
x = -1x=−1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So this is the
y = absxy=|x|
y = abs(-1y=|−1|
y = 1y=1
So
Final Answer