How do you solve #x²+2x-24=0# using the quadratic formula?

1 Answer
Jul 10, 2015

#x=9#
or
#x=-11#

Explanation:

#x^2+2x-24=0#
is a quadratic equation of the generalized form:
#color(white)("XXXX")##ax^2+bx+c = 0#
for which the roots are given by the quadratic formula:
#color(white)("XXXX")##x = (-b+-sqrt(b^2-4ac))/(2a)#

Using the specific values of the given equation:
#color(white)("XXXX")##x = (-2+-sqrt(2^2-4(1)(-24)))/(2(1))#

#color(white)("XXXX")##color(white)("XXXX")##= (-2+-sqrt(4+96))/2#

#color(white)("XXXX")##color(white)("XXXX")##= (+9)# or #(-11)#