How do you solve x^2 - 2x - 18 = 0 using the quadratic formula?

1 Answer
Aug 6, 2015

x= 1+sqrt(19) or x=1-sqrt(19)
(see below for solution using the quadratic formula)

Explanation:

The quadratic formula says that for any quadratic in the form:
color(white)("XXXX")ax^2+bx+c=0
the roots (solution) can be determined by:
color(white)("XXXX")x= (-b+-sqrt(b^2-4ac))/(2a)

For the given equation x^2-2x-18=0
a=1color(white)("XXXX")b=-2color(white)("XXXX")c=-18

So the solutions are
color(white)("XXXX")x=(2+-sqrt((-2)^2-4(1)(-18)))/(2(1))

color(white)("XXXX")color(white)("XXXX")= (2+-sqrt(4+72))/2

color(white)("XXXX")color(white)("XXXX")=(2+-sqrt(76))/2

color(white)("XXXX")color(white)("XXXX")=(2+-2sqrt(19))/2

color(white)("XXXX")color(white)("XXXX")= 1+-sqrt(19)