How do you solve using the quadratic formula for x^2 + x + 5 = 0?

2 Answers
Apr 13, 2018

The answer is (-1+-isqrt(19))/2.

Explanation:

The quadratic formula is x=(-b+-sqrt(b^2-4ac))/(2a for the equation ax^2+bx+c.

In this case, a=1, b=1, and c=5.

You can therefore substitute in those values to get:

(-1+-sqrt(1^2-4(1)(5)))/(2(1).

Simplify to get (-1+-sqrt(-19))/2.

Because sqrt(-19) is not a real number, we have to stick to imaginary solutions. (If this problem asks for real number solutions, there are none.)

The imaginary number i equals sqrt(-1), therefore we can substitute it in:

(-1+-sqrt(-1*19))/2 rarr (-1+-sqrt(-1)*sqrt(19))/2 rarr (-1+-isqrt(19))/2, the final answer.

Hope this helps!

Apr 13, 2018

See application of the quadratic formula below in obtaining the result:
color(white)("XXX")x=-1/2+-sqrt(19)i

Explanation:

x^2+x+5=0 is equivalent to color(red)1x^2+color(blue)1x+color(magenta)5=0

Applying the general quadratic formula x=(-color(blue)b+-sqrt(color(blue)b^2-4color(red)acolor(magenta)c))/(2color(red)a
for color(red)ax^2+color(blue)bx+color(magenta)c=0

to this specific case, we have
color(white)("XXX")x=(-color(blue)1+-sqrt(color(blue)1^2-4 * color(red)1 * color(magenta)5))/(2 *color(red)1)

color(white)("XXXXX")=(-1+-sqrt(-19))/2

There are no Real solutions, but as Complex values:
color(white)("XXX")x=-1/2+sqrt(19)icolor(white)("XXX")"or"color(white)("XXX")x=-1/2-sqrt(19)i