How do you solve for x in simplest radical form: 2(x+3)^2+10=66?

2 Answers
Apr 14, 2015

2(x+3)^2+10=66

(x+3)^2 + 5 = 33

x^2+6x+9+5-33=0

x^2+6x-19=0

Using the quadratic root formula: (-b+-sqrt(b^2-4ac))/2a

x=(-6+-sqrt(36+76))/2

x= (-6+-4sqrt(7))/2

x=-3-2sqrt(7)
or
x=-3+2sqrt(7)

Apr 14, 2015

Alternative solution:

2(x+3)^2 +10 = 66

2(x+3)^2 = 66 -10 color(white)"ss" added -10 on both sides

2(x+3)^2 = 56

(x+3)^2 = 56/2color(white)"ssssssss" multiplied 1/2 on both sides

(x+3)^2 = 28

x+3 = +- sqrt 28 color(white)"ssssss" there are 2 numbers whise square is 28

x = -3 +- sqrt 28 color(white)"ss" added -3 on both sides

x = -3 +- sqrt(4*7) = -3 +- sqrt4 sqrt7 = -3 +- 2sqrt7