The inequality is #x^2+x>3#
#x^2+x-3>0#
We need the roots of the quadratic equation
#x^2+x-3=0#
The discriminant is
#Delta=b^2-4ac=(1)^2-4*(1)*(-3)=1+12=13#
As #Delta>0#, there are 2 real roots
#x=(-b+-sqrtDelta)/(2a)=(-1+-sqrt13)/2#
Therefore,
#x_1=(-1-sqrt13)/2#
#x_2=(-1+sqrt13)/2#
Let #f(x)=x^2+x-3#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##x_1##color(white)(aaaa)##x_2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x-x_1##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-x_2##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)>0# when #x in (-oo,x_1) uu (x_2,+oo)#
graph{x^2+x-3 [-10, 10, -5, 5]}