How do you solve and write the following in interval notation: x^2 - 2x - 8 > 0?

1 Answer
Nov 2, 2017

The solution is x in (-oo,-2) uu(4, +oo)

Explanation:

Factorise the inequality

x^2-2x-8=(x+2)(x-4)>0

Let f(x)=(x+2)(x-4)

Build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)4color(white)(aaaa)+oo

color(white)(aaaa)x+2color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-4color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>0 when x in (-oo,-2) uu(4, +oo)

graph{(x+2)(x-4) [-31.62, 26.12, -9.97, 18.9]}