How do you solve and write the following in interval notation: #8x -3x + 2< 2(x + 7)#?
1 Answer
Explanation:
We have the inequality
#8x-3x+2 < 2(x+7)#
On the left hand side, the
#overbrace(8x-3x)^(8x-3x=5x)+2 < 2(x+7)#
#5x+2 < 2(x+7)#
Next, on the right hand side, distribute the
#5x+2 < overbrace(2(x+7))^(2(x)+2(7))#
#5x+2 < 2x+14#
Subtract
#overbrace(5x-2x)^(3x)+2 < overbrace(2x-2x)^0+14#
#3x+2 < 14#
Subtract
#3x+overbrace(2-2)^0 < overbrace(14-2)^12#
#3x < 12#
Divide both sides by
#(3x)/3 < 12/3#
#x < 4#
Now, we need to express
Since there is no lower bound,
So, the interval is