First, expand the terms on both sides of the inequality by multiplying each term within the parenthesis by the term outside the parenthesis:
#color(red)(-2)(x - 1) - 12 < color(blue)(2)(x + 1)#
#(color(red)(-2) xx x) - (color(red)(-2) xx 1) - 12 < (color(blue)(2) xx x) + (color(blue)(2) xx 1)#
#-2x - (-2) - 12 < 2x + 2#
#-2x + 2 - 12 < 2x + 2#
#-2x - 10 < 2x + 2#
Next, add #color(red)(2x)# and subtract #color(blue)(2)# from each side of the inequality to isolate the #x# term while keeping the inequality balanced:
#color(red)(2x) - 2x - 10 - color(blue)(2) < color(red)(2x) + 2x + 2 - color(blue)(2)#
#0 - 12 < (color(red)(x) + 2)x + 0#
#-12 < 4x#
Now, divide each side of the inequality by #color(red)(4)# to solve for #x# while keeping the inequality balanced:
#-12/color(red)(4) < (4x)/color(red)(4)#
#-3 < (color(red)(cancel(color(black)(4)))x)/cancel(color(red)(4))#
#-3 < x#