How do you solve #5*e^(2n)=56.7#?

1 Answer
Jun 26, 2017

I got: #n=1/2ln(11.34)=1.214168#

Explanation:

We can rearrange it:
#e^(2n)=56.7/5#
#e^(2n)=11.34#
apply the natural log to both sides:
#ln[e^(2n)]=ln(11.34)#
use a property of logs:
#2nln(e)=ln(11.34)#
and then:
#2n=ln(11.34)#
#n=1/2ln(11.34)=1.214168#