How do you solve 2tan^2x - 3secx = 0?

1 Answer
Jul 14, 2015

If we restrict the domain of x to [0, 2pi)
then x=(pi)/3 or (5pi)/3

Explanation:

2tan^2(x) - 3sec(x) = 0

rarr 2(sin^2(x))/(cos^2(x)) - 3(1/cos(x)) = 0

color(white)("XXXX")assuming cos(x)!=0 (the equation would not be valid if it were)
color(white)("XXXX")Multiply by cos^2(x)
2sin^2(x) = 3cos(x)
color(white)("XXXX")Use Pythagorean relationship
rarr 2(1-cos^2(x)) -3cos(x) = 0
color(white)("XXXX")Simplify
rarr 2cos^2(x)+3cos(x)-2=0
color(white)("XXXX")Factor
rarr (2cos(x)-1)(cos(x)+2) = 0

rArr 2cos(x)-1 = 0
or
color(white)("XXXX")cos(x)+2 = 0

*Case 1
If 2cos(x)-1 = 0
color(white)("XXXX")rarr cos(x) = 1/2
color(white)("XXXX")rarr x = (pi)/3 or (5pi)/3
color(white)("XXXX")color(white)("XXXX")assuming x in [0,2pi)

Case 2
If cos(x)+2 = 0
color(white)("XXXX")rarr cos(x) = -2
BUT
color(white)("XXXX")cos(x) in [-1,+1] " for all " x
Therefore this case is extraneous.