How do you solve 2sin^2 theta-sin theta=02sin2θsinθ=0?

2 Answers
Apr 18, 2016

theta = n*piθ=nπ or
theta= pi/6+n*2piθ=π6+n2π or
theta=(5pi)/6 +n*2piθ=5π6+n2π
color(white)("XXXXXXXXXXXXXXXX")nin ZZ

Explanation:

If 2sin^2theta-sin theta = 0
then
color(white)("XXX")(sin theta)(2sin theta -1)= 0

rarr color(white)("XXX")sin theta=0color(white)("XXXXX")orcolor(white)("XXXXX")2sin theta =1
color(white)("XXXX")rarr theta = 0+n*pi color(white)("XXXXXXXX")rarr theta=pi/6+2npi or (5pi)/6+2npi

Apr 18, 2016

I tried to solve it as a normal quadratic equation in sintheta instead of x:

Explanation:

I would collect sintheta and write:

sintheta[2sintheta-1]=0

so:

sintheta=0 when theta=0,pi,2pi... or theta=npi with n=0,1,2,3,4....

and:

2sintheta-1=0
sintheta=1/2 when theta=pi/6,5/6pi.... and multiples of 2npi each.