How do you solve #0 = x^2 + 10x + 5#?
2 Answers
Explanation:
Complete the square and use the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
#0 = x^2+10x+5#
#=(x+5)^2-25+5#
#=(x+5)^2-20#
#=(x+5)^2-(2sqrt(5))^2#
#=((x+5)-2sqrt(5))((x+5)+2sqrt(5))#
#=(x+5-2sqrt(5))(x+5+2sqrt(5))#
Hence:
#x = -5+-2sqrt(5)#
Explanation:
The easiest way for this particular example is to use the quadratic formula:
For an equation of the form
#color(red)(a)x^2+color(blue)(b)x+color(green)(c)=0#
the solutions are given by#x=(-color(blue)(b)+-sqrt(color(blue)(b)^2-4color(red)(a)color(green)(c)))/(2color(red)(a))#
For the given example
#color(red)(a)=1#
#color(blue)b=10# and
#color(green)c=5#
So