How do you simplify (x^3+x^2-2x)/(x^3+2x^2-x-2)x3+x2−2xx3+2x2−x−2?
2 Answers
with exclusions
x != 1x≠1 andx != -2x≠−2
Explanation:
(x^3+x^2-2x)/(x^3+2x^2-x-2)x3+x2−2xx3+2x2−x−2
=(x(x^2+x-2))/(x^2(x+2)-1(x+2))=x(x2+x−2)x2(x+2)−1(x+2)
=(x(x-1)(x+2))/((x^2-1)(x+2))=x(x−1)(x+2)(x2−1)(x+2)
=(x color(red)(cancel(color(black)((x-1))))color(red)(cancel(color(black)((x+2)))))/(color(red)(cancel(color(black)((x-1))))(x+1)color(red)(cancel(color(black)((x+2)))))
=x/(x+1)
=(x+1-1)/(x+1)
=1-1/(x+1)
with exclusions
These exclusions are required, because when
Note however that we do not need to specify
By factoring and factoring by grouping
Explanation:
-
Factor both your numerator and denominator
(x^3+x^2-2x)/(x^3+2x^2color(red)(-x-2)
{x(x^2+x-2)}/{(x^3+2x^2)color(red)(-1(x+2)} -
Again, factor the remaining terms
{x(x^2+x-2)}/((x^3+2x^2)-1(x+2))
{x(x+2)(x-1)}/(x^2(color(blue)(x+2))-1(color(blue)(x+2))
{x(x+2)(x-1)}/{color(blue)((x+2))(x^2-1)}
{x(cancel(x+2))cancel((x-1))}/{color(blue)((cancel(x+2))(x+1)(cancel(x-1))} -
Final Asnwer:
(x)/(x+1)