How do you simplify #(x^3+x^2-2x)/(x^3+2x^2-x-2)#?
2 Answers
with exclusions
#x != 1# and#x != -2#
Explanation:
#(x^3+x^2-2x)/(x^3+2x^2-x-2)#
#=(x(x^2+x-2))/(x^2(x+2)-1(x+2))#
#=(x(x-1)(x+2))/((x^2-1)(x+2))#
#=(x color(red)(cancel(color(black)((x-1))))color(red)(cancel(color(black)((x+2)))))/(color(red)(cancel(color(black)((x-1))))(x+1)color(red)(cancel(color(black)((x+2)))))#
#=x/(x+1)#
#=(x+1-1)/(x+1)#
#=1-1/(x+1)#
with exclusions
These exclusions are required, because when
Note however that we do not need to specify
By factoring and factoring by grouping
Explanation:
-
Factor both your numerator and denominator
#(x^3+x^2-2x)/(x^3+2x^2color(red)(-x-2)#
#{x(x^2+x-2)}/{(x^3+2x^2)color(red)(-1(x+2)}# -
Again, factor the remaining terms
#{x(x^2+x-2)}/((x^3+2x^2)-1(x+2))#
#{x(x+2)(x-1)}/(x^2(color(blue)(x+2))-1(color(blue)(x+2))#
#{x(x+2)(x-1)}/{color(blue)((x+2))(x^2-1)}#
#{x(cancel(x+2))cancel((x-1))}/{color(blue)((cancel(x+2))(x+1)(cancel(x-1))}# -
Final Asnwer:
#(x)/(x+1)#