How do you simplify the expression (3t^2-8t+4)/(6t^2-4t)3t28t+46t24t?

1 Answer
Jul 30, 2016

:" "1/(2t)(t-2) = 1/2-1/t 12t(t2)=121t

Explanation:

The first thing to try is to see if there are any common factors you can cancel out.

color(blue)("Consider the numerator")Consider the numerator

3 is prime so I can not factor out any constants from all of the numerator

color(blue)("Try 1:") ->(3t-1)(t-4) = 3t^2-12t-4t+4 color(red)(larr" Fail")Try 1:(3t1)(t4)=3t212t4t+4 Fail

color(blue)("Try 2:") " Write as: "color(green)( 3t^2-6t-2t+4)color(purple)( -> 3t(t-2)-2(t-2))Try 2: Write as: 3t26t2t+43t(t2)2(t2)
Giving: " "(t-2)(3t-2)color(red)(" "larr" Works") (t2)(3t2) Works

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider the denominator")Consider the denominator

Factor out 2t" giving "2t(3t-2)2t giving 2t(3t2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Putting it all together")Putting it all together

(3t^2-8t_4)/(6t^2-4t) -= ((t-2)cancel((3t-2)))/(2tcancel((3t-2)))

giving:" "1/(2t)(t-2) = 1/2-1/t