How do you simplify sqrt88 * sqrt33?

2 Answers
Mar 6, 2018

22sqrt6. See below

Explanation:

sqrt88·sqrt33=sqrt(11·2^3)·sqrt(11·3)=sqrt11·sqrt(2^3)·sqrt11·sqrt3

Because is a product we can reorganize by conmutativity

sqrt11·sqrt(2^3)·sqrt11·sqrt3=sqrt11·sqrt11·sqrt(2^3)·sqrt3

But sqrt(2^3)=sqrt(2·2^2)=sqrt(2^2)·sqrt2=2sqrt2 and

sqrt11·sqrt11=11. And so:

sqrt11·sqrt11·sqrt(2^3)·sqrt3=11·2·sqrt2·sqrt3=22sqrt(2·3)=22sqrt6

Mar 6, 2018

You factorize both arguments:

Explanation:

sqrt88=sqrt(2xx2xx2xx11)=2sqrt(2xx11)=2sqrt2xxsqrt11

sqrt33=sqrt(3xx11)=sqrt3xxsqrt11

Now multiply:

2sqrt2xxsqrt11xxsqrt3xxsqrt11

Rearrange:

=2sqrt2xxsqrt3xx(sqrt11xxsqrt11)

=2sqrt2xxsqrt3xx11=(2xx11)xxsqrt(2xx3)

=22sqrt6