How do you simplify #ln(8x)^(1/2)+ln4x^2-ln(16x)^(1/2)#? Precalculus Properties of Logarithmic Functions Natural Logs 2 Answers Shwetank Mauria May 17, 2018 #ln(8x)^(1/2)+ln4x^2-ln(16x)^(1/2)=2lnx+3/2ln2# Explanation: We will use identities #lna+lnb=ln(a*b)#, #lna-lnc=ln(a/c)# and #lna^n=nlna#. Hence #ln(8x)^(1/2)+ln4x^2-ln(16x)^(1/2)# = #ln(((8x)^(1/2)*4x^2)/(16x)^(1/2))# = #ln((8^(1/2)color(red)(x^(1/2))*4x^2)/(16^(1/2)color(red)(x^(1/2))))# = #ln((8^(1/2)*4x^2)/16^(1/2))# = #ln((2^2x^2)/2^(1/2))# = #ln2^2+lnx^2-ln2^(1/2)# = #2ln2+2lnx-1/2ln2# = #2lnx+3/2ln2# Answer link Kalyanam S. May 17, 2018 #color(indigo)(=> (3/2) ln 2 + 2 ln x# Explanation: #log m + log n = log (mn)# #log m - log n = log (m/n)# Given : #ln (8x)^(1/2) + ln (4x^2) - ln(16x)^(1/2)# #=> ln ((8x)^(1/2) * (4x^2)) - ln (16x)^(1/2)# #=> ln ((2sqrt2*4*x^(1/2)*x^2)/(16x)^(1/2))# #=> ln ((cancel(8)^2sqrt2 * cancel((x)^(1/2)) * x^2) / (cancel4 * cancel((x)^(1/2))))# #=> ln (2sqrt2x^2)# #=> ln (2^(3/2)) + ln x^2# #color(indigo)(=> (3/2) ln 2 + 2 ln x# Answer link Related questions What is the natural log of e? What is the natural log of 2? How do I do natural logs on a TI-83? How do I find the natural log of a fraction? What is the natural log of 1? What is the natural log of infinity? Can I find the natural log of a negative number? How do I find a natural log without a calculator? How do I find the natural log of a given number by using a calculator? How do I do natural logs on a TI-84? See all questions in Natural Logs Impact of this question 5589 views around the world You can reuse this answer Creative Commons License