How do you simplify #5e^(1/2lnx)#? Precalculus Properties of Logarithmic Functions Natural Logs 1 Answer Konstantinos Michailidis Feb 8, 2016 It is #5sqrtx# Explanation: It is #5*e^(1/2lnx)=5*e^(lnsqrtx)=5*(sqrtx)# Using the identity #e^(alnb)=e^(ln(b^a))=b^a# Answer link Related questions What is the natural log of e? What is the natural log of 2? How do I do natural logs on a TI-83? How do I find the natural log of a fraction? What is the natural log of 1? What is the natural log of infinity? Can I find the natural log of a negative number? How do I find a natural log without a calculator? How do I find the natural log of a given number by using a calculator? How do I do natural logs on a TI-84? See all questions in Natural Logs Impact of this question 1884 views around the world You can reuse this answer Creative Commons License