How do you simplify 5(35(3^n-1) - 29(2^n-1) ) - 6(35(3^n-2) - 29(2^n-2) )5(35(3n1)29(2n1))6(35(3n2)29(2n2))?

1 Answer
Oct 2, 2015

In the unlikely event that I didn't make an arithmetic mistake:
color(white)("XXXX")-35(3^n)+275(2^n)+42XXXX35(3n)+275(2n)+42

Explanation:

Note: This isn't really difficult; it's just tedious.

5(35(3^n−1)−29(2^n−1))−6(35(3^n−2)−29(2^n−2))5(35(3n1)29(2n1))6(35(3n2)29(2n2))

=(5xx35)(3^n-1)-(5xx29)(2^n-1) + ((-6)xx35)(3^n-2)-(-6xx29)(2^n-2)=(5×35)(3n1)(5×29)(2n1)+((6)×35)(3n2)(6×29)(2n2)

=175(3^n-1)-145(2^n-1)+ (-210)(3^n-2) + 174(2^n-2)=175(3n1)145(2n1)+(210)(3n2)+174(2n2)

=175*color(red)(3^n) color(green)(- 175)-145*color(blue)(2^n)color(green)(+145)-210*color(red)(3^n)color(green)(+420)+174*color(blue)(2^n)color(green)(-348)=1753n1751452n+1452103n+420+1742n348

=(175-210)*color(red)(3^n)+(-145+420)*color(blue)(2^n)+(color(green)(-175+145+420-348))=(175210)3n+(145+420)2n+(175+145+420348)

=-35(3^n)+275(2^n)+42=35(3n)+275(2n)+42