#int _(-oo)^0 dx qquad x e^x#
using IBP ie #int u v' = uv - int u' v# where, here:
#u = x, u' = 1#
#v' = e^x, v = e^x#
So we have
#[x e^x]_(-oo)^0 - int dx qquad e^x#
#= [ e^x (x - 1)]_(-oo)^0#
#= [ e^0 (0 - 1)] - [ \color{blue}{e^(-oo) (-oo) } - 1)] #
#= - 1 #
NB for the bit in blue, #lim_{x to - oo} x e^x = lim_{x to - oo} x/e^(-x) # which is indeterminate #oo/oo#so we use L'Hopital
#= lim_{x to - oo} 1/(-e^(-x)) #
#=- lim_{x to - oo} e^(x)#
#=- exp( lim_{x to - oo} x)#
#= -e^(- oo) = 0#