How do you integrate x/((ln3)(x^2 + 4))x(ln3)(x2+4)? Calculus Techniques of Integration Integration by Parts 1 Answer Antoine May 2, 2015 intx/((ln3)(x^2+4))dx∫x(ln3)(x2+4)dx ln3ln3 is a constant so this turns down to, => 1/ln3intx/(x^2+4)dx =1/ln3 int1/2*(2x)/(x^2+4)dx=1/(2ln3)int(2x)/(x^2+4)dx⇒1ln3∫xx2+4dx=1ln3∫12⋅2xx2+4dx=12ln3∫2xx2+4dx The numerator is the derivative of the denominator so, =>1/(2ln3)lnabs(x^2+4) + C⇒12ln3ln∣∣x2+4∣∣+C Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 1717 views around the world You can reuse this answer Creative Commons License