How do you integrate (x^4)(lnx)(x4)(lnx)?

1 Answer
Jul 26, 2016

intlnx xxx^4dx=x^5/5(lnx-1/5)lnx×x4dx=x55(lnx15)

Explanation:

WE can use integration by parts intudv=uv-intvduudv=uvvdu

Let u=lnxu=lnx and v=x^5/5v=x55

Hence du=dx/xdu=dxx and dv=x^4dxdv=x4dx and intudv=uv=intvduudv=uv=vdu is

intlnx xxx^4dx=intudv=uv-intvdulnx×x4dx=udv=uvvdu

= x^5/5xxlnx-intx^5/5xxdx/xx55×lnxx55×dxx

= (lnx xx x^5)/5-1/5intx^4dxlnx×x5515x4dx

= (lnx xx x^5)/5-x^5/25lnx×x55x525

= x^5/5(lnx-1/5)x55(lnx15)