Here,
I=int(x^3e^(x^2))/(x^2+1)^2dxI=∫x3ex2(x2+1)2dx
=int(x^2e^(x^2))/(x^2+1)^2*xdx=∫x2ex2(x2+1)2⋅xdx
Subst . color(violet)(x^2=u=>2xdx=du=>xdx=1/2dux2=u⇒2xdx=du⇒xdx=12du
So,
I=int(ue^u)/(u+1)^2*1/2duI=∫ueu(u+1)2⋅12du
=1/2int((u+1-1)e^u)/(u+1)^2du=12∫(u+1−1)eu(u+1)2du
=1/2int{((u+1))/(u+1)^2-1/(u+1)^2}e^udu=12∫{(u+1)(u+1)2−1(u+1)2}eudu
=1/2{color(blue)(int1/(u+1)e^udu)-color(red)
(int1/(u+1)^2e^udu)}=12{∫1u+1eudu−∫1(u+1)2eudu}
Using Integration by parts: in the first integral
II=1/2{color(blue)([1/(u+1)inte^u-int(-1)/(u+1)^2e^udu])-
color(red)(int1/(u+1)^2e^udu)}12{[1u+1∫eu−∫−1(u+1)2eudu]−∫1(u+1)2eudu}
II=1/2{color(brown)(1/(u+1)e^u+color(blue)
(int(1)/(u+1)^2e^udu)-color(red)(int1/(u+1)^2e^udu)}12{1u+1eu+∫1(u+1)2eudu−∫1(u+1)2eudu
I=1/2 *color(brown)(1/(u+1)e^u)+cI=12⋅1u+1eu+c
Subst. back color(violet)( u=x^2u=x2 we get
I=1/2(1/(x^2+1))e^(x^2)+cI=12(1x2+1)ex2+c
Hence ,
I=e^(x^2)/(2(x^2+1))+cI=ex22(x2+1)+c
.....................................................................................
Note: Change in the question is as below.
x^3ex^2tox^3e^(x^2)x3ex2→x3ex2