How do you integrate ∫(x^3ex^2)/(x^2 +1)^2dxx3ex2(x2+1)2dx?

∫(x^3e^(x^2))/(x^2 +1)^2dx x3ex2(x2+1)2dx ?

2 Answers
Jul 12, 2018

int(x^3e^(x^2))/(x^2+1)^2dx=e^(x^2)/(2(x^2+1))+cx3ex2(x2+1)2dx=ex22(x2+1)+c

Explanation:

Here,

I=int(x^3e^(x^2))/(x^2+1)^2dxI=x3ex2(x2+1)2dx

=int(x^2e^(x^2))/(x^2+1)^2*xdx=x2ex2(x2+1)2xdx

Subst . color(violet)(x^2=u=>2xdx=du=>xdx=1/2dux2=u2xdx=duxdx=12du

So,

I=int(ue^u)/(u+1)^2*1/2duI=ueu(u+1)212du

=1/2int((u+1-1)e^u)/(u+1)^2du=12(u+11)eu(u+1)2du

=1/2int{((u+1))/(u+1)^2-1/(u+1)^2}e^udu=12{(u+1)(u+1)21(u+1)2}eudu

=1/2{color(blue)(int1/(u+1)e^udu)-color(red) (int1/(u+1)^2e^udu)}=12{1u+1eudu1(u+1)2eudu}

Using Integration by parts: in the first integral

II=1/2{color(blue)([1/(u+1)inte^u-int(-1)/(u+1)^2e^udu])- color(red)(int1/(u+1)^2e^udu)}12{[1u+1eu1(u+1)2eudu]1(u+1)2eudu}

II=1/2{color(brown)(1/(u+1)e^u+color(blue) (int(1)/(u+1)^2e^udu)-color(red)(int1/(u+1)^2e^udu)}12{1u+1eu+1(u+1)2eudu1(u+1)2eudu

I=1/2 *color(brown)(1/(u+1)e^u)+cI=121u+1eu+c

Subst. back color(violet)( u=x^2u=x2 we get

I=1/2(1/(x^2+1))e^(x^2)+cI=12(1x2+1)ex2+c

Hence ,

I=e^(x^2)/(2(x^2+1))+cI=ex22(x2+1)+c
.....................................................................................

Note: Change in the question is as below.

x^3ex^2tox^3e^(x^2)x3ex2x3ex2

Jul 12, 2018

The answer is =(e^(x^2))/(2(x^2+1))+C=ex22(x2+1)+C

Explanation:

Perform the substitution

u=x^2u=x2, =>, du=2xdxdu=2xdx

The integral is

I=int(x^3e^(x^2)dx)/(x^2+1)^2I=x3ex2dx(x2+1)2

=1/2int(ue^udu)/(u+1)^2=12ueudu(u+1)2

Perform an integration by parts

intwv'dx=wv-intw'vdx

w=ue^u, =>, w'=ue^u +e^u=e^u(u+1)

v'=1/(u+1)^2, =>, v=-1/(u+1)

Therefore,

I=-1/2(ue^u)/(u+1)+1/2inte^udu

=e^u/2-(ue^u)/(2(u+1))

=e^(x^2)/2-(x^2e^(x^2))/(2(x^2+1))+C

=1/2e^(x^2)((x^2+1-x^2))/(x^2+1)+C

=(e^(x^2))/(2(x^2+1))+C