How do you integrate x^2(sinx)dx?
1 Answer
Explanation:
Use integration by parts, which takes the form:
intudv=uv-intvdu
For
u=x^2" "=>" "(du)/dx=2x" "=>" "du=2xdx
dv=sin(x)dx" "=>" "intdv=intsin(x)dx" "=>" "v=-cos(x)
Thus, substituting these into the integration by parts formula, we see that:
intx^2sin(x)dx=-x^2cos(x)-int(-2xcos(x))dx
Simplifying the negative signs:
intx^2sin(x)dx=-x^2cos(x)+2intxcos(x)dx
Now, do integration by parts once more on the remaining integral:
u=x" "=>" "(du)/dx=1" "=>" "du=dx
dv=cos(x)dx" "=>" "intdv=intcos(x)dx" "=>" "v=sin(x)
Thus:
intxcos(x)dx=xsin(x)-intsin(x)dx
Since
intxcos(x)dx=xsin(x)+cos(x)
Now, returning to before:
intx^2sin(x)dx=-x^2cos(x)+2intxcos(x)dx
Substitute in
intx^2sin(x)dx=-x^2cos(x)+2(xsin(x)+cos(x))
intx^2sin(x)dx=-x^2cos(x)+2xsin(x)+2cos(x)+C