How do you integrate (x^2)(e^x)dx?

1 Answer
Sep 17, 2016

intx^2e^xdx=e^x(x^2-2x+2)+c

Explanation:

We do it using integration by parts.

Let u=x^2 and v=e^x, then du=2xdx and dv=e^xdx

Now integration by parts states that

intu(x)v'(x)dx=u(x)v(x)-intv(x)u'(x)dx

Hence intx^2e^xdx=x^2e^x-inte^x xx 2xdx

= x^2e^x-2intxe^xdx+c ...............(1)

Now we set u=x, then du=dx

and intxe^xdx=xe^x-inte^x xx1xxdx or

intxe^xdx=xe^x-inte^xdx=xe^x-e^x

Putting this in (1), we get

intx^2e^xdx=x^2e^x-2(xe^x-e^x)+c

= e^x(x^2-2x+2)+c