How do you integrate (lnx)^2 / x^3?

1 Answer
Jun 2, 2017

Begin with integration by parts:

intudv = uv - intvdu

let u = (ln(x))^2 and dv = x^-3dx

then du = (2ln(x))/xdx and v = -1/2x^-2

int(ln(x))^2/x^3dx = -1/2(ln(x)/x)^2 -int(-1/(2x^2))((2ln(x))/x)dx

int(ln(x))^2/x^3dx = -1/2(ln(x)/x)^2 +int(ln(x))/x^3dx

Integrate by parts:

intudv = uv - intvdu

let u = ln(x) and dv = x^-3dx

then du = 1/xdx and v = -1/2x^-2

int(ln(x))^2/x^3dx = -1/2(ln(x)/x)^2 - ln(x)/(2x^2) - int (-1/2x^-2)(1/x)dx

int(ln(x))^2/x^3dx = -1/2(ln(x)/x)^2 - ln(x)/(2x^2) +1/2int 1/x^3dx

We have already done the last integral:

int(ln(x))^2/x^3dx = -1/2(ln(x)/x)^2 - ln(x)/(2x^2) -1/(4x^2)+ C

Simplify over a common denominator:

int(ln(x))^2/x^3dx = -(2(ln(x))^2 + 2ln(x) +1)/(4x^2)+ C