Making y = log_e x and
dy = dx/x
substituting in int (log_e x)^n dx we have
int (log_e x)^n dx equiv int y^n e^y dy
Now
d/(dy)(y^n e^y) = ny^{n-1}e^y+y^n e^y
so
int y^n e^y dy = y^n e^y-n int y^{n-1} e^y dy + c_1
or calling I_n = int y^n e^y dy we have
I_n = y^n e^y -n I_{n-1} + c_1 or supposing c_1=0
I_n+nI_{n-1} = y^n e^y Now making J_n=e^yI_n
J_n+nJ_{n-1} = y^n
This recurrence equation has the solution
https://en.wikipedia.org/wiki/Recurrence_relation
J_n = (-1)^n n!(c_0+sum_{k=0}^{n-1}((-1)^k)/((k+1)!)y^{k+1})
then
I_n = (c_0+sum_{k=0}^{n-1}((-1)^{n+k} n!)/((k+1)!)(log_e x)^{k+1})x
so
int (log_e x)^n dx = (c_0+sum_{k=0}^{n-1}((-1)^{n+k} n!)/((k+1)!)(log_e x)^{k+1})x