We have
I = int (lnx)^2/x^2dx
If z = lnx then dz = dx/x and
z = ln x so e^z = x
I = int z^2e^(-z)dz
Integrating by parts
u = z^2 so du = 2z dz
dv = e^(-z) dz so v = -e^(-z)
I = u*v - int v du
I = -z^2e^(-z) + 2intze^(-z)dz
Integrating by parts once again
u = z so du = dz
dv = e^(-z)dz so v = -e^(-z)
I = -z^2e^(-z) + 2(-ze^(-z) + inte^(-z)dz)
I = -z^2e^(-z) - 2ze^(-z) - 2e^(-z) + c
I = -e^(-z)(z^2 + 2z + 2) + c
But we want to have an answer in terms of x so if we remember that z = ln(x) we'll have
I = -e^(-ln(x))((lnx)^2 + 2lnx + 2) +c
I = c-((lnx)^2 + 2lnx + 2)/x