How do you integrate ln(ln(x))/x?

1 Answer
Aug 7, 2016

ln(x)(ln(ln(x))-1)+C

Explanation:

We can first substitute. Let t=ln(x) such that dt=1/xdx. Thus:

intln(ln(x))/xdx=intln(ln(x))1/xdx=intln(t)dt

From here, use integration by parts, which takes the form:

intudv=uv-intvdu

So, let:

{(u=ln(t)" "=>" "du=1/tdt),(dv=dt" "=>" "v=t):}

Thus:

intln(t)dt=tln(t)-intt(1/t)dt

=tln(t)-intdt

=tln(t)-t

=ln(x)*ln(ln(x))-ln(x)

=ln(x)(ln(ln(x))-1)+C