How do you integrate ln(ln(x))/x?
1 Answer
Aug 7, 2016
Explanation:
We can first substitute. Let
intln(ln(x))/xdx=intln(ln(x))1/xdx=intln(t)dt
From here, use integration by parts, which takes the form:
intudv=uv-intvdu
So, let:
{(u=ln(t)" "=>" "du=1/tdt),(dv=dt" "=>" "v=t):}
Thus:
intln(t)dt=tln(t)-intt(1/t)dt
=tln(t)-intdt
=tln(t)-t
=ln(x)*ln(ln(x))-ln(x)
=ln(x)(ln(ln(x))-1)+C