How do you integrate ln(b/x)dxln(bx)dx? Calculus Techniques of Integration Integration by Parts 1 Answer Douglas K. Oct 25, 2016 Please see the explanation Explanation: intln(b/x)dx =∫ln(bx)dx= intln(b) - ln(x)dx =∫ln(b)−ln(x)dx= xln(b) - xln(x) + x + Cxln(b)−xln(x)+x+C Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 1609 views around the world You can reuse this answer Creative Commons License