How do you integrate ∫2xexdx from 0 to 1? Calculus Techniques of Integration Integration by Parts 1 Answer Truong-Son N. · Tom Apr 5, 2015 By parts: ∫ba2xexdx=uv−∫bavdu Let u = 2x and v = ex. du = 2dx ∫102xexdx=(2x⋅ex)−∫10ex⋅2dx =[(2x⋅ex)−2∫10exdx]eval(0→1) =[2(1)e1−2(0)e0]−2(e1−e0) =[2e]−2e+2 =2 Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2622 views around the world You can reuse this answer Creative Commons License