How do you integrate int xsinxcosx by integration by parts method?

1 Answer
Nov 28, 2016

The answer is =(sin2x)/8-(xsin2x)/4+C

Explanation:

We use
sin2x=2sinxcosx

intxsinxcosxdx=1/2intxsin2xdx

The integration by parts is

intuv'=uv-intu'v

u=x, =>, u'=1

v'=sin2x, =>, v=-(cos2x)/2

so, intxsin2xdx=-(xcos2x)/2+1/2intcos2xdx

=-(xcos2x)/2+1/2*(sin2x)/2

=(sin2x)/4-(xcos2x)/2

And finally

intxsinxcosxdx=1/2((sin2x)/4-(xcos2x)/2) +C

=(sin2x)/8-(xsin2x)/4+C