How do you integrate #int xsin(2x)# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Euan S. Aug 8, 2016 #=1/4sin(2x) - x/2cos(2x) + C# Explanation: For #u(x), v(x)# #int uv'dx = uv ' - int u'vdx# #u(x) = x implies u'(x) = 1# #v'(x) = sin(2x) implies v(x) = -1/2cos(2x)# #intxsin(2x)dx = -x/2cos(2x) +1/2intcos(2x)dx# #= -x/2cos(2x)+1/4sin(2x)+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2767 views around the world You can reuse this answer Creative Commons License