How do you integrate int xln x^3 dx using integration by parts?

1 Answer
Dec 12, 2016

I=(3x^2)/4[2lnx-1]+C

Explanation:

need to use integration by parts.

formula is:" "intu(dv)/(dx)dx=uv-intv(du)/(dx)dx

the choice of " "u" "&" "v is vital.

if logs are involved then it is usual to take u=lnf(x) but try and simplify the expression using the laws of logs first if possible.

intxlnx^3dx=int3xlnxdx

u=lnx=>(du)/(dx)=1/x

(dv)/(dx)=3x=>v=(3x^2)/2

I=(3x^2)/2lnx-int(3x^2)/2xx1/xdx

I=(3x^2)/2lnx-int(3x)/2dx

I=(3x^2)/2lnx-(3x^2)/4+C

I=(3x^2)/4[2lnx-1]+C