How do you integrate #int xln(1+x)# using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer sjc Oct 22, 2016 #I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+C# Explanation: #intu(dv)/dxdx=uv-intv(du)/dxdx# let #u=ln(1+x)=>(du)/dx=1/(1+x)# #(dv)/dx=x=>v=1/2x^2# #I=1/2x^2ln(1+x)-1/2int(x^2/(1+x))dx# #I=1/2x^2ln(1+x)-1/2int(x-x/(1 +x))dx# #I=1/2x^2ln(1+x)-1/2int(x-1+1/(x+1))dx# #I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1597 views around the world You can reuse this answer Creative Commons License