How do you integrate int xln(1+x) using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer sjc Oct 22, 2016 I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+C Explanation: intu(dv)/dxdx=uv-intv(du)/dxdx let u=ln(1+x)=>(du)/dx=1/(1+x) (dv)/dx=x=>v=1/2x^2 I=1/2x^2ln(1+x)-1/2int(x^2/(1+x))dx I=1/2x^2ln(1+x)-1/2int(x-x/(1 +x))dx I=1/2x^2ln(1+x)-1/2int(x-1+1/(x+1))dx I=1/2x^2ln(1+x)-1/4x^2+1/2x-1/2ln(1+x)+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1854 views around the world You can reuse this answer Creative Commons License