int xe^xsinx dx
= mathcal{I}{ int xe^xe^(ix) dx }
= mathcal{I}{color(red)( int xe^((1+i)x)dx) }
working the bit in red by IBP
int xe^((1+i)x)dx
= int xd/dx (1/(1+i) e^((1+i)x)) dx
= x/(1+i) e^((1+i)x) - int d/dx (x) 1/(1+i) e^((1+i)x) dx + C
= x/(1+i) e^((1+i)x) - int 1/(1+i) e^((1+i)x) dx + C
= x/(1+i) e^((1+i)x) - 1/(1+i)^2 e^((1+i)x) + C
= (1-i)/(1-i) x/(1+i) e^((1+i)x) - ((1-i)/(1-i))^2 1/(1+i)^2 e^((1+i)x) + C
= (1-i) x/2 e^((1+i)x) - (1-i)^2 1/4 e^((1+i)x) + C
= (1-i) x/2e^x (cos x + i sin x) + i/2 e^x (cos x + i sin x) + C
And so we want
= mathcal{I}{ (1-i) x/2e^x (cos x + i sin x) + i/2 e^x (cos x + i sin x) + C}
= x/2 e^x (sin x - cos x ) + 1/2 e^x cos x + C