How do you integrate int xe^xsinx by integration by parts method?

1 Answer
Sep 14, 2016

= x/2 e^x (sin x - cos x ) + 1/2 e^x cos x + C

Explanation:

int xe^xsinx dx

= mathcal{I}{ int xe^xe^(ix) dx }

= mathcal{I}{color(red)( int xe^((1+i)x)dx) }

working the bit in red by IBP

int xe^((1+i)x)dx

= int xd/dx (1/(1+i) e^((1+i)x)) dx

= x/(1+i) e^((1+i)x) - int d/dx (x) 1/(1+i) e^((1+i)x) dx + C

= x/(1+i) e^((1+i)x) - int 1/(1+i) e^((1+i)x) dx + C

= x/(1+i) e^((1+i)x) - 1/(1+i)^2 e^((1+i)x) + C

= (1-i)/(1-i) x/(1+i) e^((1+i)x) - ((1-i)/(1-i))^2 1/(1+i)^2 e^((1+i)x) + C

= (1-i) x/2 e^((1+i)x) - (1-i)^2 1/4 e^((1+i)x) + C

= (1-i) x/2e^x (cos x + i sin x) + i/2 e^x (cos x + i sin x) + C

And so we want

= mathcal{I}{ (1-i) x/2e^x (cos x + i sin x) + i/2 e^x (cos x + i sin x) + C}

= x/2 e^x (sin x - cos x ) + 1/2 e^x cos x + C