How do you integrate int xe^xdx using integration by parts?

1 Answer
Oct 8, 2016

Remember the formula for IBP: int u(dv)/dxdx=uv-intv(du)/dxdx

Let u=x=>(du)/dx=1
Let (dv)/dx=e^x=>v=e^x

Substitute into the IBP equation:
int xe^xdx=xe^x-int e^x(1)dx
:. int xe^xdx=xe^x-int e^xdx
:. int xe^xdx=xe^x-e^x+c