How do you integrate #int xe^(-3x)# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Jul 23, 2016 #= -1/3 e^(-3x) ( x +1/3 ) + C # Explanation: #int xe^(-3x) \ dx # #= int x d/dx ( - 1/3e^(-3x) ) \ dx # which, by IBP, #= -1/3 x e^(-3x) - int d/dx( x) - 1/3e^(-3x) \ dx # #= -1/3 x e^(-3x) +1/3 int e^(-3x) \ dx # #= -1/3 x e^(-3x) +1/3 (-1/3) e^(-3x) + C # #= -1/3 e^(-3x) ( x +1/3 ) + C # Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 6095 views around the world You can reuse this answer Creative Commons License