How do you integrate int xcosx by parts from [0,pi/2]? Calculus Techniques of Integration Integration by Parts 1 Answer sjc Nov 21, 2016 int_0^(pi/2)xcosxdx=pi/2-1 Explanation: Parts formula. intu(dv)/(dx)dx=uv-intv(du)/(dx)dx int_0^(pi/2)xcosxdx u=x=>(du)/(dx)=1 (dv)/(dx)=cosx=>v=sinx I=[xsinx-int(sinx)dx]_0^(pi/2) I=[xsinx+cosx]_0^(pi/2) now substitute the limits in I=[(pi/2)sin(pi/2)+cos(pi/2)]-[0xxsin0+cos0] I=[(pi/2)cancel(sin(pi/2))^1+cancel(cos(pi/2))^0]-[cancel(0xxsin0)^0+cancel(cos0)^1] int_0^(pi/2)xcosxdx=pi/2-1 Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 17079 views around the world You can reuse this answer Creative Commons License