How do you integrate int xcosx by parts from [0,pi/2]?

1 Answer
Nov 21, 2016

int_0^(pi/2)xcosxdx=pi/2-1

Explanation:

Parts formula.

intu(dv)/(dx)dx=uv-intv(du)/(dx)dx

int_0^(pi/2)xcosxdx

u=x=>(du)/(dx)=1

(dv)/(dx)=cosx=>v=sinx

I=[xsinx-int(sinx)dx]_0^(pi/2)

I=[xsinx+cosx]_0^(pi/2)

now substitute the limits in

I=[(pi/2)sin(pi/2)+cos(pi/2)]-[0xxsin0+cos0]

I=[(pi/2)cancel(sin(pi/2))^1+cancel(cos(pi/2))^0]-[cancel(0xxsin0)^0+cancel(cos0)^1]

int_0^(pi/2)xcosxdx=pi/2-1