How do you integrate int x sinx dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Lovecraft Jan 9, 2016 I = sin(x) - xcos(x) + c Explanation: I = intxsin(x)dx Say u = x so du = 1 and dv = sin(x) so v = -cos(x) I = -xcos(x) + intcos(x)dx I = sin(x) - xcos(x) + c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 6640 views around the world You can reuse this answer Creative Commons License