How do you integrate int x^nsinx^(n)dx using integration by parts?

1 Answer
May 5, 2018

answer
int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[n*x^(2n)*cosx^n]/(n+1)*dx

Explanation:

integration by parts

int x^nsinx^(n)dx

suppose:

u=sin(x^n)

du=cos(x^n)*n*x^(n-1)*dx

dv=x^n*dx

v=1/(n+1)*x^(n+1)

intu*dv=uv-intv*du

int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[1/(n+1)*x^(n+1)][cos(x^n)*n*x^(n-1)]*dx

int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[n*x^(2n)*cosx^n]/(n+1)*dx