How do you integrate int x^nsinx^(n)dx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer James May 5, 2018 answer int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[n*x^(2n)*cosx^n]/(n+1)*dx Explanation: integration by parts int x^nsinx^(n)dx suppose: u=sin(x^n) du=cos(x^n)*n*x^(n-1)*dx dv=x^n*dx v=1/(n+1)*x^(n+1) intu*dv=uv-intv*du int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[1/(n+1)*x^(n+1)][cos(x^n)*n*x^(n-1)]*dx int x^nsinx^(n)dx=[1/(n+1)*x^(n+1)]*sin(x^n)-int[n*x^(2n)*cosx^n]/(n+1)*dx Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 4868 views around the world You can reuse this answer Creative Commons License