How do you integrate int x cos sqrtx dx using integration by parts?
1 Answer
Explanation:
Before using integration by parts, let
So:
I=intxcos(sqrtx)dx=intt^2cos(t)(2tdt)=int2t^3cos(t)dt
Now we should apply integration by parts. IBP takes the form
{(u=2t^3,=>,du=6t^2dt),(dv=cos(t)dt,=>,v=sin(t)):}
Then:
I=uv-intvdu=2t^3sin(t)-int6t^2sin(t)dt
For
{(u=6t^2,=>,du=12tdt),(dv=sin(t)dt,=>,v=-cos(t)):}
Now:
I=2t^3sin(t)-[-6t^2cos(t)+int12tcos(t)dt]
I=2t^3sin(t)+6t^2cos(t)-int12tcos(t)dt
Reapplying IBP:
{(u=12t,=>,du=12dt),(dv=cos(t)dt,=>,v=sin(t)):}
I=2t^3sin(t)+6t^2cos(t)-[12tsin(t)-int12sin(t)dt]
I=2t^3sin(t)+6t^2cos(t)-12tsin(t)+int12sin(t)dt
Since
I=2t^3sin(t)+6t^2cos(t)-12tsin(t)-12cos(t)
Factoring:
I=2(tsin(t)(t^2-6)+3cos(t)(t^2-2))
Since
I=2(sqrtxsin(sqrtx)(x-6)+3cos(sqrtx)(x-2))+C