We use n, m instead of c,d,
.
d/(dx)(x^n e^(x^m)) = nx^(n-1)e^m+ m x^(n+m-1) e^(x^m)
Calling now
I_n = int x^n e^(x^m)dx we have the recurrence relationship
mI_(n+m-1)+nI_(n-1)=x^n e^(x^m)
with
I_(m-1)=int x^(m-1)e^(x^m)dx = 1/me^(x^m) or calling k = n-1
mI_(m+k)+(k+1)I_k = x^(k+1)e^(x^m)
Finally
I_(m+k)+(k+1)/mI_k = 1/mx^(k+1)e^(x^m)
Example. n=5, m=3 so k=2 and we want
I_(m+2)= I_5 = int x^5 e^(x^3)dx
we know that I_(m-1) = I_2 and
I_2=1/3e^(x^3) so
I_(m+2)+(2+1)/mI_2=1/mx^3e^(x^3) so
I_5 +3/3I_2=1/3x^3e^(x^3) or
I_5 = 1/3x^3 e^(x^3)-1/3e^(x^3)=1/3(x^3-1)e^(x^3)