How do you integrate int x^c e^(x^d)dx, where c>d, using integration by parts?

1 Answer
Oct 4, 2016

Use the recurrence formula

I_(d+k)+(k+1)/dI_k = 1/dx^(k+1)e^(x^d)

with initial k = c-d and

I_(d-1)= 1/de^(x^d)

Explanation:

We use n, m instead of c,d,
.

d/(dx)(x^n e^(x^m)) = nx^(n-1)e^m+ m x^(n+m-1) e^(x^m)

Calling now

I_n = int x^n e^(x^m)dx we have the recurrence relationship

mI_(n+m-1)+nI_(n-1)=x^n e^(x^m)

with

I_(m-1)=int x^(m-1)e^(x^m)dx = 1/me^(x^m) or calling k = n-1

mI_(m+k)+(k+1)I_k = x^(k+1)e^(x^m)

Finally

I_(m+k)+(k+1)/mI_k = 1/mx^(k+1)e^(x^m)

Example. n=5, m=3 so k=2 and we want

I_(m+2)= I_5 = int x^5 e^(x^3)dx

we know that I_(m-1) = I_2 and

I_2=1/3e^(x^3) so

I_(m+2)+(2+1)/mI_2=1/mx^3e^(x^3) so

I_5 +3/3I_2=1/3x^3e^(x^3) or

I_5 = 1/3x^3 e^(x^3)-1/3e^(x^3)=1/3(x^3-1)e^(x^3)