How do you integrate int x arcsec x using integration by parts?

2 Answers
May 12, 2018

= x^2/2 \ arcsec x - 1/2 sqrt(x^2 - 1) + C

Explanation:

Clearly, you must need to know (arcsec(x))^' to do this by IBP.

So let y = arcsec(x):

  • sec y = x

  • (sec y = x)^' implies sec y \ tan y \ y' = 1

  • implies y' = 1/(sec y \ tan y) = 1/(x sqrt(x^2-1)) color(red)(= (arcsec(x))^')

Next is IBP:

int f'(x) g(x) \ dx = f(x) \ g(x) - int f(x) g'(x) \ dx

implies int dx \ x \ arcsec x = int dx \ (x^2/2)^' \ arcsec x

= x^2/2 \ arcsec x - int dx \ x^2/2 \ 1/(x sqrt(x^2-1))

= x^2/2 \ arcsec x - 1/2 int dx \ x/( sqrt(x^2-1)) = triangle

Given that: (sqrt(x^2 - 1))^' = 1/2 * 1/( sqrt(x^2-1))* 2x = x/( sqrt(x^2-1))

Then:

triangle = x^2/2 \ arcsec x - 1/2 int dx \ (sqrt(x^2 - 1))^'

= x^2/2 \ arcsec x - 1/2 sqrt(x^2 - 1) + C

May 12, 2018

int \ x \ "arcsec" \ x \ dx = 1/2x^2 \ "arcsec" \ x - 1/2 sqrt(x^2-1) + c

Explanation:

We seek:

I = int \ x \ "arcsec" \ x \ dx

We can then apply Integration By Parts:

Let { (u,="arcsec" \ x, => (du)/dx,=1/(xsqrt(x^2-1))), ((dv)/dx,=x, => v,=1/2x^2 ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

We have:

int \ ("arcsec" \ x)(x) \ dx = ("arcsec" \ x)(1/2x^2) - int \ (1/2x^2)(1/(xsqrt(x^2-1))) \ dx

I = 1/2x^2 \ "arcsec" \ x - 1/2 \ int \ x/(sqrt(x^2-1)) \ dx

For the integral IBP has introduced, we can perform a substitution, Let:

u = x^2-1 => (du)/dx = 2x

And if we substitute this into the integral we get:

int \ x/(sqrt(x^2-1)) = int \ (1/2)/sqrt(u) \ du
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 1/2 \ int \ u^(-1/2) \ du
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 1/2 \ (u^(1/2))/(1/2)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = sqrt(u)

And restoration of the substitution gives us:

int \ x/(sqrt(x^2-1)) = sqrt(x^2-1)

And combining our results, we get:

I = 1/2x^2 \ "arcsec" \ x - 1/2 sqrt(x^2-1) + c