How do you integrate int x*5^x by integration by parts method?

1 Answer
Jun 11, 2017

intx*5^x dx=

Explanation:

intx*5^x dx

Let f=x, then df=dx

And dg=5^x dx, then g=5^x /ln5

intx*5^x dx=(x*5^x)/ln5-1/ln5int5^x dx

=(x*5^x)/ln5-5^x/ln^2 5+"c"

Taking out a factor of 1/ln^2 5 yields:

intx*5^x dx=1/ln^2 5[(x*5^x)ln5-5^x]+"c"

How to integrate 5^x dx

int5^x dx

Let u=5^x

Then du=5^xln5 dx

And dx=1/(5^xln5) du

thereforeint5^x dx=int5^x xx 1/(5^xln5) du=1/ln5int1 du=u/ln5+"c"
=5^x/ln5+"c"