How do you integrate int x^4lnx by integration by parts method?

1 Answer
Sep 24, 2016

int x^n lnx dx = 1/(n+1)(x^(n+1)lnx-x^(n+1)/(n+1))+C

Explanation:

d/(dx)(x^n lnx) = n x^(n-1)lnx+x^(n-1) or

(n+1)int x^n lnx dx = x^(n+1)lnx-int x^n dx

so

int x^n lnx dx = 1/(n+1)(x^(n+1)lnx-x^(n+1)/(n+1))+C